## Trigonometric Functions \(\leftarrow Hyperbolic Functions \)

Construction of relationships that transform hyperbolic functions into trigonometric functions.

The Pythagorean formula for a right triangle with hypotenuse "h" and side "a" adjacent to angle  $\alpha$  and side "b" opposite angle  $\alpha$  is:

For this triangle we have the following trigonometric functions  $ft = ft(\alpha)$  with angle  $\alpha$ :

$$a = h. \cos \alpha$$
  $b = h. \sin \alpha$  33.21

Reshaping the Pythagorean formula gives:

$$h^{2} = a^{2} + b^{2} \to b^{2} = h^{2} - a^{2} = (h+a)(h-a) \to \left(\frac{h+a}{b}\right)\left(\frac{h-a}{b}\right) = e^{\phi}e^{-\phi} = 1$$
 33.22

This is divided into the following hyperbolic functions  $fh = fh(\emptyset)$  with angle  $\emptyset$ :

$$e^{\emptyset} = \frac{h+a}{b} > zero$$
33.23

$$e^{-\emptyset} = \frac{h-a}{b} > zero$$
33.24

Where applying the trigonometric functions we obtain  $fh(\phi) = ft(\alpha)$ :

$$e^{\emptyset} = \frac{h+a}{b} = \frac{h+h.cos\alpha}{h.sen\alpha} = \frac{1+cos\alpha}{sen\alpha}$$
33.25

$$e^{-\emptyset} = \frac{h-a}{b} = \frac{h-h.cos\alpha}{h.sen\alpha} = \frac{1-cos\alpha}{sen\alpha}$$
33.26

The real equality of the functions  $fh(\emptyset) = ft(\alpha)$  only occurs if the angle of the hyperbolic function is equal to the angle of the trigonometric function, that is, if  $fh(\emptyset) = ft(\emptyset)$  where both are hyperbolic functions or  $fh(\alpha) = ft(\alpha)$  where both are trigonometric functions.

From trigonometry we have:

$$tg\left(\frac{\alpha}{2}\right) = \frac{1 - \cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1 + \cos\alpha} = \sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}}$$
33.27

Applying 27 we obtain the fundamental function of the trigonometric angle  $\alpha$  as a function of the hyperbolic angle  $\emptyset$ ,  $\alpha = \alpha(\emptyset)$ :

$$e^{\phi} = \frac{1 + \cos\alpha}{\sin\alpha} = \frac{1}{tg\left(\frac{\alpha}{2}\right)} = \frac{1}{\sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}}} = \sqrt{\frac{1 + \cos\alpha}{1 - \cos\alpha}}$$
33.28

$$e^{-\phi} = \frac{1 - \cos\alpha}{\sin\alpha} = tg\left(\frac{\alpha}{2}\right) = \sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}}$$
33.29

$$\alpha = 2 \operatorname{arctg}(e^{-\phi})$$
 33.30

The substitution of the angle 30  $\alpha = \alpha(\emptyset)$  in the trigonometric functions transforms it into hyperbolic functions with the necessary restrictions of existence, in the following form:

$$fh(\emptyset) = ft(\alpha) = ft[\alpha(\emptyset)] = ft(\emptyset) \to fh(\emptyset) = ft(\emptyset)$$
33.31

From 28 and 29 we obtain the fundamental formulas of the hyperbolic angle  $\emptyset$  as a function of the trigonometric angle  $\alpha$ ,  $\emptyset = \emptyset(\alpha)$ :

$$ln(e^{\emptyset}) = ln\left[\frac{1}{tg(\frac{\alpha}{2})}\right] \to \emptyset = \emptyset(\alpha) = ln\left[\frac{1}{tg(\frac{\alpha}{2})}\right]$$
33.32

$$ln(e^{-\emptyset}) = ln\left[tg\left(\frac{\alpha}{2}\right)\right] \to -\emptyset = ln\left[tg\left(\frac{\alpha}{2}\right)\right] \to \emptyset = \emptyset(\alpha) = ln\left[\frac{1}{tg\left(\frac{\alpha}{2}\right)}\right]$$
33.33

The functions (30)  $\alpha = \alpha(\emptyset)$  and (32)  $\emptyset = \emptyset(\alpha)$  are inverses of each other.

The substitution of angle 32  $\emptyset = \emptyset(\alpha)$  in the hyperbolic functions transforms it into trigonometric functions with the appropriate existence restrictions, in the following form:

$$ft(\alpha) = fh(\emptyset) = fh[\emptyset(\alpha)] = fh(\alpha) \to ft(\alpha) = fh(\alpha)$$
33.34

In the unitary hyperbola  $x^2 - y^2 = 1$  applying the functions  $x = ch\emptyset$  and  $y = sh\emptyset$  we get:

$$x^{2} - y^{2} = ch^{2} \emptyset - sh^{2} \emptyset = (ch \emptyset + sh \emptyset)(ch \emptyset - sh \emptyset) = e^{\emptyset} \cdot e^{-\emptyset} = 1$$
 33.35

Breaking it down into two functions yields the hyperbolic cosine "chø" and hyperbolic sine "shø" functions:

$$\operatorname{ch}\emptyset + \operatorname{sh}\emptyset = e^{\emptyset} \to x = \operatorname{ch}\emptyset = \frac{e^{\emptyset} + e^{-\emptyset}}{2}$$
 33.36

$$\operatorname{ch} \emptyset - \operatorname{sh} \emptyset = e^{-\emptyset} \to y = \operatorname{sh} \emptyset = \frac{e^{\emptyset} - e^{-\emptyset}}{2}$$
 33.37

In 36 and 37 we have the fundamental properties of the hyperbolic functions.

Applying to the hyperbolic cosine  $ch\phi$ , the previous variables are obtained:

$$x = ch\emptyset = \frac{e^{\emptyset} + e^{-\emptyset}}{2} = \frac{1}{2}\left(\frac{h+a}{b} + \frac{h-a}{b}\right) = \frac{h}{b} = \frac{h}{h.sen\alpha} = \frac{1}{sen\alpha} = cosec\alpha$$
33.38

Applying to the hyperbolic sine  $sh\emptyset$ , the previous variables are obtained:

$$y = sh\emptyset = \frac{e^{\emptyset} - e^{-\emptyset}}{2} = \frac{1}{2} \left( \frac{h+a}{b} - \frac{h-a}{b} \right) = \frac{a}{b} = \frac{h \cdot cos\alpha}{h \cdot sen\alpha} = \frac{cos\alpha}{sen\alpha} = cotg\alpha$$
 33.39

Applying the hyperbolic cosine  $x = ch\emptyset = cosec\alpha$  and the hyperbolic sine  $y = sh\emptyset = cotg\alpha$  to the unitary hyperbola equation  $x^2 - y^2 = 1$  we get:

$$x^2 - y^2 = ch^2 \emptyset - sh^2 \emptyset = cosec^2 \alpha - cotg^2 \alpha = 1$$
33.40

Which is a result of trigonometry.

With the relations of the hyperbolic cosine  $ch\phi$  and the hyperbolic sine  $sh\phi$  we can define the other relations between the trigonometric functions and the hyperbolic functions:

$$tgh\phi = \frac{sh\phi}{ch\phi} = \frac{\frac{cos\alpha}{sen\alpha}}{\frac{1}{sen\alpha}} = cos\alpha$$
33.41

$$\cot gh \phi = \frac{ch\phi}{sh\phi} = \frac{\frac{1}{sen\alpha}}{\frac{cos\alpha}{sen\alpha}} = \frac{1}{cos\alpha} = sec\alpha$$
 33.42

$$sech \phi = \frac{1}{ch\phi} = \frac{1}{\frac{1}{sen\alpha}} = sen\alpha$$
 33.43

$$cosech\phi = \frac{1}{sh\phi} = \frac{1}{\frac{cos\alpha}{sen\alpha}} = \frac{sen\alpha}{cos\alpha} = tg\alpha$$
 33.44

$$sech^2 \phi + tgh^2 \phi = sen^2 \alpha + cos^2 \alpha = 1$$
 33.45

$$cotgh^2 \phi - cosech^2 \phi = sec^2 \alpha - tg^2 \alpha = 1$$
 33.46

**Construction** of the already known relationships that transform the hyperbolic functions into the exponential form of a complex number.

Next, we will use Euler's formulas:

$$e^{i\alpha} = \cos\alpha + i sen\alpha$$
  $e^{-i\alpha} = \cos\alpha - i sen\alpha$  33.47

Reshaping the Pythagorean formula, we get:

$$h^{2} = a^{2} + b^{2} = a^{2} - (ib)^{2} = (a + ib)(a - ib) \rightarrow \frac{(a + ib)}{h} \frac{(a - ib)}{h} = e^{\phi}e^{-\phi} = 1$$
33.48

This breaks down into the following complex hyperbolic functions:

$$e^{\phi} = \frac{a+ib}{h} > zero$$
33.49

$$e^{-\emptyset} = \frac{a - ib}{h} > zero$$
33.50

For this triangle we have the trigonometric relations:

$$\frac{a}{h} = \cos\alpha \qquad \qquad \frac{b}{h} = \sin\alpha \qquad \qquad 33.51$$

Applying trigonometric relations, we get:

$$e^{\phi} = \frac{a+ib}{h} = \frac{a}{h} + i\frac{b}{h} = \cos\alpha + i \sin\alpha$$
33.52

$$e^{-\phi} = \frac{a-ib}{h} = \frac{a}{h} - i\frac{b}{h} = \cos\alpha - i\sin\alpha$$
33.53

To conform to Euler's formulas we must change the hyperbolic arguments to  $\phi = i\alpha$  and thus we obtain the hyperbolic functions written as the exponential form of a complex number:

$$e^{\phi} = e^{i\alpha} = \cos\alpha + i \sin\alpha$$
 33.54  
 $e^{-\phi} = e^{-i\alpha} = \cos\alpha - i \sin\alpha$  33.55

Calling the cosseno  $chi\alpha$  hyperbolic complex as:

$$x = chi\alpha = \frac{e^{i\alpha} + e^{-i\alpha}}{2} = \frac{1}{2}[(cos\alpha + isen\alpha) + (cos\alpha - isen\alpha)] = cos\alpha$$
33.56

And naming the sine  $shi\alpha$  hyperbolic complex as:

$$y = shi\alpha = \frac{e^{i\alpha} - e^{-i\alpha}}{2} = \frac{1}{2} [(\cos\alpha + i sen\alpha) - (\cos\alpha - i sen\alpha)] = i sen\alpha$$
 33.57

Applying the cosine  $x = chi\alpha = cos\alpha$  hyperbolic complex and the sine  $y = shi\alpha = isen\alpha$  hyperbolic complex in the equation of the unit hyperbola  $x^2 - y^2 = 1$  results:

$$x^2 - y^2 = ch^2i\alpha - sh^2i\alpha = cos^2\alpha - i^2sen^2\alpha = cos^2\alpha + sen^2\alpha = 1$$
33.58

Which is a result of trigonometry.

With the relationships of the hyperbolic cosine  $chi\alpha = cos\alpha$  and the hyperbolic sine  $shi\alpha = isen\alpha$  we can define the other relationships between complex trigonometric functions and complex hyperbolic functions.

**Construction** of relationships that transform hyperbolic functions into trigonometric functions similar to those that occur in Gudermannian functions.

The Pythagorean formula for a right triangle with hypotenuse "h" and side "a" adjacent to angle  $\alpha$  and side "b" opposite angle  $\alpha$  is:

For this triangle we have the trigonometric relations:

$$a = h. \cos \alpha$$
  $b = h. \sin \alpha$  33.60

Reshaping the Pythagorean formula gives:

$$h^{2} = a^{2} + b^{2} \rightarrow a^{2} = h^{2} - b^{2} = (h+b)(h-b) \rightarrow \left(\frac{h+b}{a}\right)\left(\frac{h-b}{a}\right) = e^{\beta} \cdot e^{-\beta} = 1$$
 33.61

This is divided into the following hyperbolic functions:

$$e^{\beta} = \frac{h+b}{a} > zero$$
33.62

$$e^{-\beta} = \frac{h-b}{a} > zero$$
33.63

Where applying the trigonometric relations we obtain:

$$e^{\beta} = \frac{h+b}{a} = \frac{h+h.sen\alpha}{h.cos\alpha} = \frac{1+sen\alpha}{cos\alpha}$$
33.64

$$e^{-\beta} = \frac{h-b}{a} = \frac{h-hsen\alpha}{h.cos\alpha} = \frac{1-sen\alpha}{cos\alpha}$$

$$33.65$$

From these we obtain the fundamental formulas of the hyperbolic angle  $\beta$ :

$$ln(e^{\beta}) = ln\left(\frac{1+sen\alpha}{cos\alpha}\right) \rightarrow \beta = ln\left(\frac{1+sen\alpha}{cos\alpha}\right)$$
 33.66

$$ln(e^{-\beta}) = ln\left(\frac{1-sen\alpha}{\cos\alpha}\right) \to \beta = -ln\left(\frac{1-sen\alpha}{\cos\alpha}\right)$$
33.67

Denominating the hyperbolic cosine  $ch\beta$  as:

$$x = ch\beta = \frac{e^{\beta} + e^{-\beta}}{2} = \frac{1}{2}\left(\frac{h+b}{a} + \frac{h-b}{a}\right) = \frac{h}{a} = \frac{h}{h.cos\alpha} = \frac{1}{cos\alpha} = sec\alpha$$
33.68

And calling the hyperbolic sine  $sh\beta$  as:

$$y = sh\beta = \frac{e^{\beta} - e^{-\beta}}{2} = \frac{1}{2} \left( \frac{h+b}{a} - \frac{h-b}{a} \right) = \frac{b}{a} = \frac{h.sen\alpha}{h.cos\alpha} = \frac{sen\alpha}{cos\alpha} = tg\alpha$$
 33.69

Applying the hyperbolic cosine  $x = ch\beta = sec\alpha$  and the hyperbolic sine  $y = sh\beta = tg\alpha$  to the unitary hyperbola equation  $x^2 - y^2 = 1$  we get:

$$x^{2} - y^{2} = ch^{2}\beta - sh^{2}\beta = sec^{2}\alpha - tg^{2}\alpha = 1$$
33.70

Which is a result of trigonometry.

With the relations of the hyperbolic cosine  $ch\beta$  and the hyperbolic sine  $sh\beta$  we can define the other relations between the trigonometric functions and the hyperbolic functions:

$$tgh\beta = \frac{sh\beta}{ch\beta} = \frac{\frac{sen\alpha}{cos\alpha}}{\frac{1}{cos\alpha}} = sen\alpha$$
33.71

$$\cot gh\beta = \frac{ch\beta}{sh\beta} = \frac{\frac{1}{cos\alpha}}{\frac{sen\alpha}{cos\alpha}} = \frac{1}{sen\alpha} = cosec\alpha$$
 33.72

$$sech\beta = \frac{1}{ch\beta} = \frac{1}{\frac{1}{cos\alpha}} = cos\alpha$$
 33.73

$$cosech\beta = \frac{1}{sh\beta} = \frac{1}{\frac{sen\alpha}{cos\alpha}} = \frac{cos\alpha}{sen\alpha} = cotg\alpha$$
 33.74

$$sech^{2}\beta + tgh^{2}\beta = cos^{2}\alpha + sen^{2}\alpha = 1$$
33.75

$$\cot gh^2\beta - \csc ch^2\beta = \csc^2\alpha - \cot g^2\alpha = 1$$
 33.76





